

EFFECTS OF NUTRIENT ENRICHMENT IN THE NATION'S ESTUARIES:

A Decade of Change

More information or access to data, products, and services can be obtained from:

National Estuarine Eutrophication Assessment

www.ian.umces.edu/neea/; http://www.eutro.us/; http://www.eutro.org/

University of Maryland Center for Environmental Science

http://ian.umces.edu/

NOAA's National Centers for Coastal Ocean Science

http://coastalscience.noaa.gov/

NOAA'S Center for Coastal Monitoring and Assessment

http://ccma.nos.noaa.gov/

To receive copies of the report, contact:

Suzanne Bricker
Center for Coastal Monitoring and Assessment
National Centers for Coastal Ocean Science
N/NCCOS/CCMA SSMC4 Floor 9
1305 East West Highway
Silver Spring, MD 20910
suzanne.bricker@noaa.gov

For bibliographic purposes this book may be cited as:

Bricker, S., B. Longstaff, W. Dennison, A. Jones, K. Boicourt, C. Wicks, and J. Woerner. 2007. Effects of Nutrient Enrichment In the Nation's Estuaries: A Decade of Change. NOAA Coastal Ocean Program Decision Analysis Series No. 26. National Centers for Coastal Ocean Science, Silver Spring, MD. 328 pp.

Copyright © 2007 by the National Oceanic and Atmospheric Administration

First published 2007

Front cover photo: Ben Longstaff. Inset photos (top to bottom): Ben Longstaff, Adrian Jones, Tim Carruthers, Peter Doering, Jane Thomas

Effects of Nutrient Enrichment In The Nation's Estuaries: A Decade of Change

Assessing change in eutrophic condition from the early 1990s to 2004

National Estuarine Eutrophication Assessment Update

EFFECTS OF NUTRIENT ENRICHMENT IN THE NATION'S ESTUARIES: A DECADE OF CHANGE

National Estuarine Eutrophication Update

Authors:

Suzanne Bricker¹, Ben Longstaff ², William Dennison³, Adrian Jones³, Kate Boicourt², Caroline Wicks², and Joanna Woerner³

Case study and chapter authors:

Rex Baumberger, Harbor Branch Oceanographic Institution
Brad Bedford, Harbor Branch Oceanographic Institution
Suzanne Bricker, National Oceanic and Atmospheric Administration
Robert W. Buddemeier, Kansas Geological Survey
Stefano Ciavatta, University of Venice (Italy)
Michael Connor, San Francisco Estuary Institute

William Dennison, University of Maryland Center for Environmental Science Susan Dunham, National Oceanic and Atmospheric Administration

Ken Dunton, University of Texas at Austin

Joao Ferreira, Institute of Marine Research (Portugal)

Diane M. Gould, U.S. Environmental Protection Agency

Holly Greening, Tampa Bay Estuary Program

Matthew Hall, Maryland Department of Natural Resources

Brian Lapointe, Harbor Branch Oceanographic Institution

Ben Longstaff, NOAA/University of Maryland Center for Environmental Science

Douglas Lipton, University of Maryland College Park

Bruce Maxwell, Swarthmore College

Jan Newton, University of Washington

Chris Onuf, U.S. Geological Survey

Roberto Pastres, University of Venice (Italy)

Nancy Rabalais, Louisiana Universities Marine Consortium William Romano, Maryland Department of Natural Resources

Teresa Simas, Institute of Marine Research (Portugal)

Stephen V. Smith, Centro de Investigación Científica y de Educación

Superior de Ensenada, (CICESE)

Paul Stacey, Connecticut Department of Environmental Protection

Brian Sturgis, National Park Service

Dennis Swaney, Cornell University

Peter Tango, Maryland Department of Natural Resources

David Taylor, Massachusetts Water Resource Authority

Mirta Teichberg, Boston University Marine Program

Mark Trice, Maryland Department of Natural Resources

Ivan Valiela, Boston University Marine Program

Peter Verity, Skidaway Institute of Oceanography

Baodong Wang, First Institute of Oceanography (China)

Rob Warner, National Oceanic and Atmospheric Administration

Catherine Wazniak, Maryland Department of Natural Resources

Xiao Yongjin, University of Algarve (Portugal)

Xuelei Zhang, First Institute of Oceanography (China)

Mingyuan Zhu, First Institute of Oceanography (China)

¹NOAA, National Ocean Service, National Centers for Coastal Ocean Science, Silver Spring, MD

² EcoCheck, NOAA Chesapeake Bay Office & University of Maryland Center for Environmental Science, Cooperative Oxford Laboratory, Oxford, MD

³ University of Maryland Center for Environmental Science, Cambridge, MD

FOREWORD

In 1999, the National Estuarine Eutrophication Assessment described the scale, scope, and characteristics of nutrient enrichment and eutrophic conditions in the Nation's estuaries. At the time, it was the most comprehensive examination ever reported of nutrient-related water quality impacts, their causes, and expected changes in condition in U.S. coastal water bodies. The results showed that most estuarine systems exhibited some level of eutrophication impact in the early 1990s. One of the main aims of the report was to develop a national strategy to limit the nutrient enrichment problems affecting U.S. estuarine and coastal water bodies.

This updated 2007 report continues to examine eutrophic conditions into the 2000s. It attempts to look at changes that occurred in the past decade, and analyze the Nation's progress in addressing what we now see as a ubiquitous problem. Coastal eutrophication is a global problem not limited to U.S. coastal waters. This report highlights the nutrient contamination in selected coastal systems throughout the U.S., Europe, Australia, and China in an effort to share what we know about the development of eutrophication, and to provide successful solutions to better manage the problem.

In addition to gaining a broader view of the issue, this report has enhanced and improved upon earlier work in other ways. The innovative assessment approach using the experience and knowledge base of experts from around the Nation has been transformed into a web-enabled tool. This web-based tool allows investigators to share data and information effectively and communicate in a standardized manner. This represents one of few instances where web-based communication has been accomplished for ecological monitoring on such a large scale (accessible at http://ian.umces.edu/neea or http://www.eutro.us). Effective communication is vital because the assessment will be updated on a periodic basis. The development of a complementary human use/socioeconomic indicator is also a significant enhancement designed to bridge the gap between scientific and public interest.

Additionally, this report provides a valuable context for a number of ongoing and planned activities designed to address estuarine eutrophication such as the multi-agency National Coastal Condition Report and the Gulf of Mexico Alliance Governors' Action Plan.

We encourage you to use this work to stimulate further scientific and management efforts to protect our precious coastal resources.

John H. Dunnigan

Assistant Administrator for Ocean Services and Coastal Zone Management Dr. Donald F. Boesch

Smald & Seein

President

University of Maryland,

Center for Environmental Science

121

124

127

131

134

Changjiang (Yangtze) Estuary, China

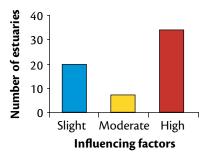
Jiaozhou Bay, China

Venice Lagoon, Italy

Mondego River, Portugal

Moreton Bay, Australia

TABLE OF CONTENTS

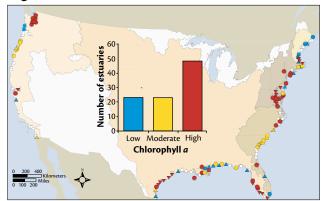

- 1	KEY FINDINGS		
Ш	EXECUTIVE SUMMARY		
1	CHAPTER 1 • INTRODUCTION AND BACKGROUND	139	CHAPTER 6 • IMPROVEMENTS TO THE ASSESSMENT
2	Understanding eutrophication	140	Improving the method
4	Conducting a national assessment	142	Comparing the EPA National Coastal Assessment with the
5	Updating the assessment		NEEA
6	Developing an online tool for assessment updates	144	Determining typology
8	Application of the update	153	Developing a human-use indicator for Barnegat Bay
9	CHAPTER 2 • APPROACH	157	CHAPTER 7 •
10	Evaluating eutrophication		CONCLUSIONS AND CONSIDERATIONS FOR
12	Determining influencing factors		MONITORING, RESEARCH, AND MANAGEMENT
14	Determining the eutrophic condition		
19	Determining future outlook	A1	ACKNOWLEDGEMENTS
20	Assessment of estuarine trophic status (ASSETS)	A3	REFERENCES
21	CHAPTER 3 • NATIONAL ASSESSMENT	A =	DATA SOURCES
22	Summarizing the nation's eutrophic condition	A 5	DATA SOURCES
24	Exploring physical characteristics on a national scale	A 7	ESTUARY SUMMARIES
28	Assessing eutrophication on a national scale		Estuary summary introduction
38	Eutrophication and climate change		North Atlantic region
	CHARTER 4 DECIONAL CHARACTER		Mid-Atlantic region
39	CHAPTER 4 • REGIONAL SUMMARIES		South Atlantic region
40	North Atlantic region		Gulf of Mexico Region
47	Mid-Atlantic region		Pacific Region
55	South Atlantic region		
64	Gulf of Mexico region		
74	Pacific Coast region		
83	CHAPTER 5 • CASE STUDIES		
84	Examining eutrophication in other systems: case studies		
86	Boston, Massachusetts		
88	Casco Bay, Maine		
92	Corsica River, Maryland		
95	Hood Canal, Washington		
99	Laguna Madre, Texas Long Island Sound, Connecticut and New York		
101			
104	Looe Key, Florida Maryland Coastal Bays		
106	Maryland Coastal Bays Mississippi-Atchafalaya River Plume, Louisiana		
109 111	San Francisco Bay, California		
	Skidaway River estuary, Georgia		
113 115	Tampa Bay, Florida		
118	Waquoit Bay, Massachusetts		
110	vvaquoit day, iviassaciiusetts		

KEY FINDINGS

1. The majority of estuaries assessed were highly influenced by human-related activities.

Highly influenced estuaries had high nitrogen loads compared to the estuary's dilution or flushing capacity (Figure 1). High nitrogen loads were largely attributed to the influence of expanding and dense coastal human populations.

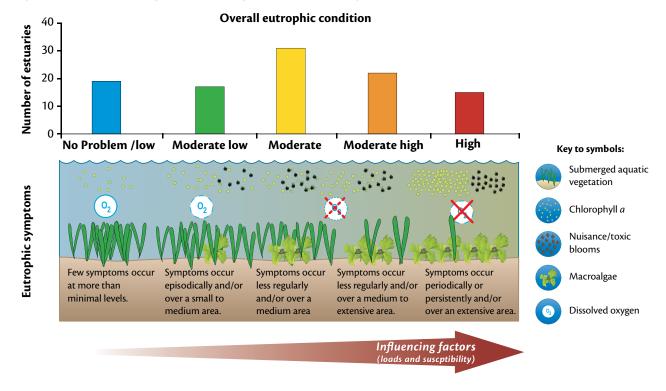
Figure 1. Factors influencing eutrophication (nitrogen load and susceptibility) were high for the majority of assessed systems.


2. The majority of estuaries assessed had overall eutrophic conditions rated as moderate to high.

Eutrophication has a predictable suite of symptoms including increased chlorophyll *a*, macroalgae and nuisance/toxic blooms, decreased dissolved oxygen, and submerged aquatic vegetation loss (Figure 2).

3. The most commonly occurring eutrophic symptom was high spatial coverage and high frequency of elevated chlorophyll *a* levels.

Most estuaries also exhibited at least one other moderate to high symptom expression in addition to chlorophyll *a* (Figure 3).


Figure 3. A high chlorophyll *a* rating was observed in a large number of the Nation's estuaries.

4. Overall eutrophic condition and symptom expressions were geographically variable.

There were differences in eutrophic status among estuaries in close proximity (Figure 4). The net effect of this variability was that there was no national

Figure 2. A conceptualization of the relationship between overall eutrophic conditions, associated eutrophic symptoms, and influencing factors (nitrogen loads and susceptibility).

